Mussel-inspired Functionalization of Cotton for Nano-catalyst Support and Its Application in a Fixed-bed System with High Performance
نویسندگان
چکیده
Inspired by the composition of adhesive and reductive proteins secreted by marine mussels, polydopamine (PDA) was used to coat cotton microfiber (CMF), and then acted as reducing agent for the growth of Pd nanoparticles on PDA coated CMF (PDA@CMF) composites. The resultant CMF@PDA/Pd composites were then packed in a column for the further use in fixed-bed system. For the catalysis of the reduction of 4-nitrophenol, the flow rate of the 4-aminophenol solution (0.5 mM) was as high as 60 mL/min. The obtained fixed-bed system even exhibited superior performance to conventional batch reaction process because it greatly facilitated the efficiency of the catalytic fibers. Consequently, its turnover frequency (TOF) was up to 1.587 min(-1), while the TOF in the conventional batch reaction was 0.643 min(-1). The catalytic fibers also showed good recyclability, which can be recycled for nine successive cycles without a loss of activity. Furthermore, the catalytic system based on CMF@PDA/Pd can also be applied for Suzuki coupling reaction with the iodobenzene conversion up to 96.7%. The strategy to prepare CMF@PDA/Pd catalytic fixed bed was simple, economical and scalable, which can also be applied for coating different microfibers and loading other noble metal nanoparticles, was amenable for automated industrial processes.
منابع مشابه
Determination of the Deactivation Model of Iron-potassium/γ-Al2O3 Catalyst in a Fixed Bed Reactor
Catalyst activity and performance are the most important factors for selecting a catalyst in different processes. The Fischer-Tropsch synthesis is a very important synthesis that extensive action has been taken place to increase the activity of its catalysts in the recent century. Deactivation of the catalysts of the process is influenced by many factors, among which coking and sintering have c...
متن کاملNano cotton-shape mesoporous (NCSM) modified by Fe3O4: Green, magnetic and reusable catalytic system for dechlorization of bromothymol blue (BTB)
Fe3O4-containing cotton-like mesoporous silica system (Fe3O4@NCSM) was studied with regard to its performance towards the photodecolorization of bromothymol blue (BTB) aqueous solution. The surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like FTIR, XRD, BET, SEM and TEM. The N2 Adso...
متن کاملNano cotton-shape mesoporous (NCSM) modified by Fe3O4: Green, magnetic and reusable catalytic system for dechlorization of bromothymol blue (BTB)
Fe3O4-containing cotton-like mesoporous silica system (Fe3O4@NCSM) was studied with regard to its performance towards the photodecolorization of bromothymol blue (BTB) aqueous solution. The surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like FTIR, XRD, BET, SEM and TEM. The N2 Adso...
متن کاملNano-silica supported ethane-sulfonic acid: An efficient heterogeneous solid acid catalyst for one-pot synthesis of xanthene and acridine derivatives
In this study, silica nanoparticles were used as support to prepare a new heterogeneous catalyst system for application in organic reactions. The reaction of silica nanoparticles with sodium 2-bromoethane-1-sulfonate resulted in the connection of a sulfonic acid group on the surface of silica nanoparticles (NSESA). The synthetic catalyst system was characterized using different microscopic and ...
متن کاملNano-silica supported ethane-sulfonic acid: An efficient heterogeneous solid acid catalyst for one-pot synthesis of xanthene and acridine derivatives
In this study, silica nanoparticles were used as support to prepare a new heterogeneous catalyst system for application in organic reactions. The reaction of silica nanoparticles with sodium 2-bromoethane-1-sulfonate resulted in the connection of a sulfonic acid group on the surface of silica nanoparticles (NSESA). The synthetic catalyst system was characterized using different microscopic and ...
متن کامل